A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.
نویسندگان
چکیده
The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research.
منابع مشابه
2 A CRISPR / Cas 9 toolbox for multiplexed plant genome editing and transcriptional 21
Running title: A CRISPR/Cas9 toolbox for gene editing and transcriptional regulation 1 2 3 Co-corresponding authors: 4 Yiping Qi, Department of Biology, East Carolina University, Greenville, North Carolina 27858; 5 Phone: 252-328-9764; Fax: 252-328-4178, Email: [email protected] 6 7 Yong Zhang, Department of Biotechnology, School of Life Sciences and Technology, University 8 of Electronic Science and...
متن کاملTranscriptional regulation with CRISPR-Cas9: principles, advances, and applications.
CRISPR-Cas9 has recently emerged as a promising system for multiplexed genome editing as well as epigenome and transcriptome perturbation. Due to its specificity, ease of use and highly modular programmable nature, it has been widely adopted for a variety of applications such as genome editing, transcriptional inhibition and activation, genetic screening, DNA localization imaging, and many more...
متن کاملBreakthrough Technologies A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation
Department of Biology, East Carolina University, Greenville, North Carolina 27858 (L.G.L., J.W.P., Y.Q.); Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China (D.Z., X.T., X.Z., Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Mi...
متن کاملRecent Advances in Genome Editing Using CRISPR/Cas9
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we brie...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 169 2 شماره
صفحات -
تاریخ انتشار 2015